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Abstract. Tatarian dogwood (Cornus alba) is an ornamental shrub with white fruits,
creamy-white flowers, and red stems in fall through late winter and is widely used in
residential landscape, public parks, and botanical gardens. Two greenhouse experiments
were conducted to characterize the survival, morphological, aesthetic, and physiological
responses of tatarian dogwood seedlings to salinity and drought stresses. In Expt. 1,
tatarian dogwood seedlings grown in three soilless growing substrates (Metro-Mix 360,
560, and 902) were irrigated with a nutrient solution at an electrical conductivity (EC) of
1.2 dS·mL1 (control) or saline solution (by adding calculated amount of sodium chloride
and calcium chloride) at an EC of 5.0 or 10.0 dS·mL1 once per week for 8 weeks. Results
showed that substrate did not influence the growth of tatarian dogwood seedling. All
plants irrigated with saline solutions at an EC of 10.0 dS·mL1 died, whereas those
irrigated with saline solutions at an EC of 5.0 dS·mL1 exhibited severe foliar salt damage
with an average visual score of 1.0 (on a scale of 0 to 5, with 0 = dead and 5 = excellent
without foliar salt damage). Compared with the control, saline solutions at an EC of 5.0
dS·mL1 reduced plant height and shoot dry weight (DW) by 50.8% and 55.2%,
respectively. Relative chlorophyll content [soil plant analysis development (SPAD)
reading], chlorophyll fluorescence (Fv/Fm), and net photosynthesis rate (Pn) also de-
creased when plants were irrigated with saline solutions at an EC of 5.0 and 10.0 dS·mL1.
Leaf sodium (Na+) concentration of tatarian dogwood seedlings irrigated with saline
solutions at an EC of 5.0 and 10.0 dS·mL1 increased 11 and 40 times, respectively,
compared with the control, whereas chloride (Cl-) concentration increased 25 and 33
times, respectively. In Expt. 2, tatarian dogwood seedlings were irrigated at a substrate
volumetric water contents (volume of water/volume of substrate, VWC) of 15%, 20%,
25%, 30%, 35%, 40%, or 45% using a sensor-based automated irrigation system for 60
days. Results showed that drought stress decreased plant growth of tatarian dogwood
seedlings with a reduction of 71%, 85%, and 87% in plant height, leaf area, and shoot
DW, respectively, when VWC decreased from 45% to 15%, but all plants survived at
all VWC treatments. Significant reductions of photosynthesis (Pn), stomatal conductance
(gS), transpiration rate (E), andwater potential were also found in plants at a VWCof 15%,
compared with other VWCs. However, SPAD readings and Fv/Fm of tatarian dogwood
seedlings were similar among the VWCs. In conclusion, tatarian dogwood seedlings were
sensitive to the salinity levels tested in this study but could survive at all tested substrate
volumetric water contents and exhibited resistance to drought conditions.

Water scarcity is one of the severe envi-
ronmental constraints to plant growth and
development. On a global basis, approxi-
mately one-third of lands are located in semi-

arid and arid regions, which receive only 13 to
76 cm of precipitation annually, and the
remaining two-thirds of lands are occasionally
exposed to drought conditions (Bhattacharjee

and Saha, 2014). Plants under drought stress
tend to reduce leaf size, stimulate leaf abscis-
sion, enhance root growth, and limit photo-
synthesis (Taiz et al., 2015). Some plants can
maintain water balance under drought condi-
tions through osmotic adjustment (Farooq
et al., 2008). The fact that drought resistance
varies among plant species warrants further
investigation to evaluate plant responses to
drought conditions and select drought-tolerant
plants for landscape use.

Soil salinity is also a global issue and is
caused partially by human activities such as
irrigation with poor quality water and poor
soil drainage, which result in excess soluble
salts in the soil. It is estimated that 20% of
the irrigated lands in the world are currently
affected by salinity stress (Taiz et al., 2015).
Salinity induces a series of metabolic dys-
functions in plants, including specific ion
toxicity, nutrient imbalance, decreased pho-
tosynthesis, and enzyme dysfunction (Munns
and Tester, 2008). The extent of adverse
impact of salinity on plant physiological
processes depends on the rate and duration
of salinity stress. Salinity stress can damage
various physiological and chemical processes
and even kill the plant. Salt-tolerant plants
can withstand the adverse effects of high
salinity without severe foliar salt damage
and significant reductions in growth and yield
(Grieve et al., 2008). The ability to tolerate
salinity stress varies among plant species and
genotypes. Evaluating plant species com-
monly used in landscape for salt tolerance
may aid in identifying salt-tolerant plants for
landscape use.

Tatarian dogwood (Cornus alba) is a
member of dogwood family (Cornaceae) that
is native to Siberia, northern China, and
Korea (Zhang et al., 2013). It has been intro-
duced to North America and Europe because
of its high cold hardiness and resistance to air
pollution (Konarska, 2011). Tatarian dog-
wood is a popular ornamental shrub with
white fruits, creamy-white flowers, and red
stems in fall through late winter (Dirr, 2009).
It is widely used in residential landscape,
public parks, and botanical gardens.

The morphological and physiological re-
sponses to abiotic stress vary with species in
dogwood family (Hinckley et al., 1980;
Renault, 2005). Red-osier dogwood (Cornus
stolonifera) has been reported to be moder-
ately resistant to salt stress in a number of
investigations (Davis et al., 2014; Mustard
and Renault, 2004; Renault and Affifi, 2009).
In a greenhouse study, the changes in the cell
wall composition and elasticity of red-osier
dogwood (Cornus sericea) under drought
stress were attributed to the delay in breaking
bud (Mustard and Renault, 2006). Dale et al.
(2003) found that water deficit enhanced the
freeze-tolerance of red-osier dogwood. Flow-
ering dogwood (Cornus florida) has been
reported to grow well in moderately com-
pacted soil (Day et al., 2000).

However, little is known regarding the
tolerance of salt and drought stresses of
tatarian dogwood. Therefore, the purpose of
this study was to characterize the survival,
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morphological, aesthetic, and physiological
responses of tatarian dogwood seedlings to
salinity and drought stresses.

Materials and Methods

Plant materials
Tatarian dogwood seeds (F.W. Schu-

macher Co., Sandwich, MA) in wet sands were
stratified at 4 �C for 2 months starting from
Dec. 2015. In February, 2016, seedlings were
transplanted into 10-cm pots with a soilless
growing substrate (45% to 55% canadian
sphagnum peatmoss, vermiculite, composted
bark, dolomite limestone, 0.0001% silicon di-
oxide (SiO2) (Metro-Mix 360 RSI; SunGro
Horticulture, Agawam, MA). These seedlings
were used for both salinity and drought studies.

Salinity study (Expt. 1)
Growing substrates. Three soilless grow-

ing substrates (Metro-Mix 360, Metro-Mix
560, Metro-Mix 902; SunGro Horticulture,
Agawam, MA) were used in this study.
Metro-Mix 360 contains finer particles and
less composted bark; it is recommended for
production in relatively small containers such
as propagation and transplants (Sun Gro Hor-
ticulture, 2019). Metro-Mix 560 is recom-
mended for production in medium- to large-
sized containers, and Metro-Mix 902 is
recommended for nursery crops and perennials
and forestry (Sun Gro Horticulture, 2019).
Uniform 4-month-old dogwood seedlings were
transplanted into 3.8-L plastic containers
(PC1D-4, Nursery Supplies, Orange, CA) filled
with one of the substrates on 1 June 2016. All
plants were grown in a greenhouse in El Paso,
TX (lat. 31�41#45$N, long. 106�16#54$W,
elevation 1139 m) following a randomized
complete block design with 10 replications
per treatment per substrate.

Salinity treatments. Salinity treatments
were initiated on 14 June 2016 by irrigating
plants with either a nutrient or a saline solu-
tion. The nutrient solution was prepared by
adding 1 g·L–1 15N–2.2P–12.5K (Peters Excel

15–5–15 Ca-Mag Special; ICL Specialty Fer-
tilizers, Dublin, OH) to reverse osmosis (RO)
water, and the resulting EC was 1.2 dS·m–1.
The saline solution at an EC of 5.0 dS·m–1 was
prepared by adding 1.20 g·L–1 sodium chloride
(NaCl) and 1.16 g·L–1 calcium chloride
(CaCl2) to the nutrient solution, and the saline
solution at an EC of 10.0 dS·m–1 was prepared
by adding 2.84 g·L–1 NaCl and 2.70 g·L–1

CaCl2 to the nutrient solution. The pH of all
solutions was adjusted to 6.6 using potassium
hydroxide (KOH). Both nutrient and saline
solutions were prepared in 100-L tanks with
EC confirmed using an EC meter (LAQUA
Twin; Horiba, Ltd., Kyoto, Japan) before irri-
gation. From 14 June to 17 Aug. 2016, treat-
ment solutions were applied manually roughly
once per week for 8 weeks. A total of 1.0 L
treatment solution was applied to each plant
each time, resulting in a leaching fraction of
�35%. Between treatment solution irriga-
tions, plants were irrigated with 500 mL of
nutrient solution whenever the substrate sur-
face became dry. Irrigation frequency varied
with environmental condition and treatment.

Growing conditions. The temperature in
the greenhouse was measured using T thermo-
couples (T-type; Omega Engineering, Stamford,
CT) connected to a datalogger (CR1000; Camp-
bell Scientific, Logan, UT). During the experi-
ment, day and night temperature was 25.0 ±
4.2 �C (mean ± SD) and 17.2 ± 4.2 �C, respec-
tively. Photosynthetic photon fluxwasmeasured
with a quantum sensor (Apogee Instruments,
Logan, UT). Daily light integral inside the
greenhouse was 9.5 ± 4.2 mol·m–2·d–1. The
average relative humidity was 34.7% ± 13.0%.

Leachate EC. The leachate EC was deter-
mined following the pour-through methods
according to Cavins et al. (2008). One plant
per treatment per substrate was chosen for
measurement after treatment solutions were
applied. The substrate final ECe was deter-
mined using a saturated soil paste technique
(Gavlak et al., 1994).

Plant growth. Plant height (centimeters)
was recorded from the pot rim to the top
growth point at the beginning of the experi-
ment and on 20 July (36 d after the initiation
of treatment, first harvest) and on 17 Aug.
2016 (64 d after the initiation of treatment,
second harvest). At both harvest times,
aboveground parts of five plants were har-
vested, and shoot DW was determined after
oven-drying at 70 �C for 5 d. Leaf area
(square centimeters) of all living plants was
determined using an area meter (LI-3100C;
LI-COR Biosciences, Lincoln, NE).

Foliar salt damage evaluation. Foliar salt
damage was rated by giving a visual score
based on a reference scale from 0 to 5 at the end
of the experiment, where 0 = dead; 1 = severe
foliar damage (>90% leaves with burn and
necrosis at the margin); 2 = moderate foliar
damage (90% to 50%); 3 = slight foliar damage
(50% to 10%); 4 = good quality with minimal
foliar damage (<10%); and 5 = excellent with-
out foliar damage (Sun et al., 2015).

Gas exchange, relative chlorophyll
content, and chlorophyll fluorescence. Leaf
net Pn, gS, and E of plants were measured

using a portable photosynthesis system with
an automatic universal PLC6 broad leaf cu-
vette (CIRAS-2; PP Systems, Amesbury,
MA) 1 d before the first and second harvest.
Relative chlorophyll content (SPAD reading)
was also measured using a handheld chloro-
phyll meter (measured as the optical density;
Minolta Camera Co., Osaka, Japan). Mean-
while, to examine the effect of elevated
salinity on leaf photosynthetic apparatus, min-
imal fluorescence (F0), maximum fluorescence
(Fm), the maximal photochemical efficiency of
PSII (Fv/Fm, Fv = Fm – F0), were measured
using a chlorophyll fluorescence system
(Pocket PEA; Hansatech, Norfolk, UK).

Mineral analysis. Leaves at the first har-
vest were separated from the stem to analyze
Na+, Cl-, calcium (Ca2+), potassium (K+),
phosphorus (P), zinc (Zn2+), iron (Fe3+), sul-
fur (S), copper (Cu2+), magnesium (Mg2+),
and boron (B) concentrations. Leaves were
ground to pass a 40-mesh screen with a
stainless Wiley mill (Thomas Scientific,
Swedesboro, NJ). The powder samples were
extracted using 2% acetic acid (Fisher Sci-
entific, Fair Lawn, NJ), and the Cl- concen-
tration of the solution was determined using
a chloride analyzer (M926; Cole Parmer
Instrument Company, Vernon Hills, IL)
(Gavlak et al., 1994). Powder samples were
submitted to the Soil, Water and Forage
Testing Laboratory at Texas A&M Univer-
sity (College Station, TX) for analyzing Na+,
Ca2+, K+, P, Zn2+, Fe3+, S, Cu2+, Mg2+, and B
concentrations using an inductively coupled
plasma-optical emission spectrometry (SPEC-
TRO Analytical Instruments, Mahwah, NJ)
and reported on a dry plant biomass basis
(Havlin and Soltanpour,1989; Isaac and John-
son, 1975).

Experimental design and statistical
analysis. The experiment used a split-plot
design with the salinity treatment as the main
plot and the three soilless growing substrates
as the subplot with 10 replications per treat-
ment per substrate. A two-way analysis of
variance (ANOVA) was used to test the
effects of soil salinity and substrates on plant
growth. Means separation among treatments
was conducted using Tukey’s honestly sig-
nificant difference multiple comparison. All
statistical analyses were performed using a
generalized linear model in JMP software
(Version 12, SAS Institute, Cary, NC).

Drought study (Expt. 2)
Irrigation treatments. Uniform 4-month-

old seedlings were transplanted into 7.6-L,
injection-molded, polypropylene containers
(No. 2B; Nursery Supplies, Orange, CA)
filled with Metro-Mix 360 RSI on 20 June
2016. The substrate was incorporated with 25
g 15N–3.96P–10K controlled release fertil-
izer (Scotts Osmocote Plus 15–9–12 with 5 to
6 months’ longevity; The Scotts Company,
Marysville, OH).

From 30 June to 1 Sept. 2016, plants were
irrigated using a sensor-based automated ir-
rigation system similar to that described
by Nemali and van Iersel (2006) at one of
the seven substrate VWC set points. One
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capacitance sensor (10 HS, Decagon, Pull-
man, WA) was inserted perpendicularly into
the substrate in a randomly selected container
in each treatment. The sensors were con-
nected to a datalogger (CR10; Campbell
Scientific) through a multiplexer (AM416;
Campbell Scientific), and the substrate mois-
ture was measured every 5 min. A substrate-
specific calibration equation converted voltage
readings from the soil moisture sensors to
VWC (L·L–1) (VWC = –20.99 + 25.349 ·
voltage + 46.55 · voltage2, R2 = 0.984). The
datalogger compared the VWC in each treat-
ment with the VWC set point for that partic-
ular treatment. As soon as the VWC in a
container dropped below the set point for
irrigation, the datalogger sent a signal to the
16-channel relay controller (SDM-CD16AC;
Campbell Scientific), which opened the sole-
noid valve (X-13551-72; Dayton Electric Co.,
Niles, IL) corresponding to that treatment for
40 s. Each container was watered with one
dribble ring (Dramm, Manitowoc, WI) at a
diameter of 15 cm with five emitter holes per
ring. The dribble ring was connected to
pressure-compensated drip emitter (8 LPH;
Netafim USA, Fresno, CA) with an average
flow rate of 133.3 mL·min–1. Seven irrigation
thresholds were VWC values of 0.15 L·L–1

(15%), 0.20 L·L–1 (20%), 0.25 L·L–1 (25%),
0.30 L·L–1 (30%), 0.35 L·L–1 (35%), 0.40
L·L–1 (40%), and 0.45 L·L–1 (45%). Plants
were watered with RO water throughout the
experiment.

For drought experiment, plant height, leaf
area, shoot DW, visual score, SPAD reading,
gas exchange, and Fv/Fm were determined as
described in the salt experiment at the end of
the experiment. In addition, midday leaf
water potential was taken using a water
potential system (Psypro; Wescor, Logan,
UT). The average air temperature in the
greenhouse was 26.5 ± 3.4 �C (mean ± SD)
during the day and 17.6 ± 2.9 �C at night. The
average daily light integral was 9.7 ± 1.3
mol·m–2·d–1 and the average relative humid-
ity was 36.2% ± 11.8% during the experiment
period. During the experiment, Abamectin
(AVID 0.15 EC; Syngenta Crop Protection,
Greensboro, NC) at 0.1 mL per gallon was
sprayed three times to control thrips (Thysa-
noptera) and/or aphids (Aphidoidea).

Experimental design and statistical
analysis.All plants were arranged in the green-
house following a randomized complete block
design with seven treatments (VWC thresh-
olds), two blocks, and four plants per treatment
in each block. All data were subjected to
ANOVA analysis. Means separation among
treatments was conducted using Tukey’s honest
significant difference multiple comparison. All
statistical analyses were performed using a
generalized linear model in JMP software (Ver-
sion 12, SAS Institute, Cary, NC).

Results and Discussion

Salinity study (Expt. 1)
Substrates did not affect the EC values of

leachate solutions; therefore, data were
pooled across substrate. The average EC of

leachate solutions ranged from 2.5 to 4.5
dS·m–1 for the control (Fig. 1). When saline
solutions at an EC of 5.0 or 10.0 dS·m–1 were
applied, the average EC of the leachate solu-
tions was from 5.6 to 10.7 dS·m–1 and from
8.1 to 15.1 dS·m–1, respectively (Fig. 1). These
results indicated that salts accumulated in the
root zone. At the second harvest (66 d after the
initiation of treatment), the substrate ECe was
1.9 ± 0.5, 3.7 ± 0.9, and 5.0 ± 1.3 dS·m–1,
respectively, for the irrigation with nutrient
solutions (control) and saline solutions at an
EC of 5.0 or 10.0 dS·m–1 (data not shown).

There was no significant difference in
growth and physiological parameters among
substrate types and no interaction between
substrate and salinity was found in this study
(Tables 1 and 2). All data were pooled across
substrates. When irrigated with saline solu-
tions at an EC of 10.0 dS·m–1, severe foliar
salt damage was observed on tatarian dog-
wood plants with an average visual score of
2.4 at 3 weeks after the initiation of treat-
ments, and all plants died at 5 weeks after the
initiation of treatments (data not shown). At
both harvests, plants irrigated with saline
solutions at an EC of 5.0 dS·m–1 exhibited
slight and severe foliar salt damage with an
average visual score of 3.4 and 1.0, respec-
tively (Table 1). A significant reduction of
34.9% in leaf area was observed in tatarian
dogwood plants irrigated with saline solu-
tions at an EC of 5.0 dS·m–1 at the first harvest
(Table 1). In addition, tatarian dogwood
plants irrigated with saline solutions at an
EC of 5.0 dS·m–1 had 89.1% less leaf area
than those in the control at the second har-
vest. Severe foliar damage and small leaf area
induced by salinity stress has been widely
reported in glycophyte plants (Abdullah
et al., 2001).

Plants irrigated with saline solutions at an
EC of 5.0 dS·m–1 were 36.7% shorter and had
20.9% less shoot DW than those in the
control at the first harvest, and more reduc-
tions of height (50.9%) and shoot DW
(55.0%) were observed at the second harvest
(Table 1). When irrigated with saline solu-
tions at an EC of 10.0 dS·m–1, plants were
65.1% shorter and accumulated 45.2% less
shoot DW compared with the control at the
first harvest. Generally, woody ornamental
plants are considered sensitive to salinity
stress with growth reductions greater than
50% when subjected to soil salinity levels of
4.8 or 7.8 dS·m–1 for a 6-month period
(Cassaniti et al., 2012). In this study, more
than 50% growth reductions were observed
under saline solution irrigation for only 2
months. Tatarian dogwood might be consid-
ered a salt-sensitive species. Red-osier
dogwood (Cornus stolonifera) were also sen-
sitive to salt stress, and the seedlings treated
with 50 mmol·L–1 NaCl for 30 d became 16%
shorter and accumulated 39% less shoot dry
mass than the control (Mustard and Renault,
2006).

Compared with the control, significant
reductions in SPAD reading and Pn were
observed for those plants irrigated with saline
solutions at an EC of 5.0 and 10.0 dS·m–1 at
both harvests (Table 2). Leaf discoloration
induced by salinity stress has been reported to
associate with reductions in SPAD readings
and Pn (Niu et al., 2007). In addition, saline
solutions at an EC of 5.0 dS·m–1 did not affect
the gS and E of tatarian dogwood plants at
both harvests. However, saline solutions at an
EC of 10.0 dS·m–1 reduced the gS and E of
tatarian dogwood plants. This is similar to
previous studies on other species (Khayyat
et al., 2016; Sun et al., 2018).

Fig. 1. Time course of the weekly leachate electrical conductivity (EC) during the experimental period.
Control represents a nutrient solution at an EC of 1.2 dS·m–1; EC 5 represents a saline solution at an EC
of 5.0 dS·m–1; and EC 10 represents a saline solution at an EC of 10.0 dS·m–1. Substrates did not affect
leachate EC; therefore, data were pooled across substrate. Vertical bars represent the SD of nine
measurements, three per substrate.
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Chlorophyll fluorescence is usually mea-
sured to reflect photochemical damage to
plants under salinity stress as indicate by
decreases in Fv/Fm (Thomas and Turner,
2001). At the first harvest, plants irrigated
with saline solutions at an EC of 10.0 dS·m–1

decreased the Fv/Fm values compared with
the control, but this was not the case for those
plants irrigated with saline solutions at an EC
of 5.0 dS·m–1 (Table 2). At the second har-
vest, plants irrigated with saline solutions at
an EC of 5.0 dS·m–1 also had reduced Fv/Fm
values compared with the control. Many
studies have revealed that the response of
chlorophyll fluorescence to salinity stress
varied with plant species, the salinity levels
and duration. For example, saline irrigation
water at an EC of 5.0 and 10.0 dS·m–1 did not
influence the Fv/Fm values of the salt-
sensitive species in Lamiaceae, such as Ajuga
reptans (bugleweed), Poliomintha longiflora
(Mexican oregano), and Scutellaria suffru-
tescens (cherry skullcap) (Wu et al., 2016).
However, Niu et al. (2008) found that the
Fv/Fm values decreased quadratically as the
salinity levels of irrigation water increased.
Liu et al. (2017) reported that saline solution
at an EC of 5.0 dS·m–1 did not influence the
Fv/Fm values ofDiervilla rivularis (mountain
bush-honeysuckle) plants at 5 weeks after the
initiation of treatment but significantly re-
duced the Fv/Fm values of Diervilla rivularis
plants at 9 weeks after the initiation of treat-
ment. Therefore, it would be difficult to
assess the salt tolerance solely relying on
chlorophyll fluorescence (Cai et al., 2014a).

Saline solutions at an EC of 5.0 and 10.0
dS·m–1 significantly increased the leaf Na+

and Cl- concentrations of tatarian dogwood
plants (Table 3). Leaf Na+ concentration of
tatarian dogwood plants irrigated with saline
solutions at an EC of 5.0 and 10.0 dS·m–1 was
11 and 40 times more than that in the control,
respectively. The leaf Cl- concentrations of
tatarian dogwood plants irrigated with saline
solutions at an EC of 5.0 and 10.0 dS·m–1 was
25 and 33 times greater than that in the
control, respectively. In addition, leaf Ca2+

concentration of tatarian dogwood plants was
significantly increased by 38.5% and 28.6%
when irrigated with saline solutions at an EC
of 5.0 and 10.0 dS·m–1, respectively. How-
ever, the K+ concentration in tatarian dog-
wood plants irrigated with saline solutions at
an EC of 5.0 and 10.0 dS·m–1 was 1.3 to 1.5
times as that in the control. These results are
similar to previous work done on the salt
sensitive ornamental species such as Chae-
nomeles speciose (flowering quince) and
Diervilla rivularis that exhibit severe foliar
salt damage with reduced plant growth and
photosynthesis and have relatively high Na+

and Cl- concentrations in the leaf (Liu et al.,
2017). Reduction in the growth and photo-
synthesis of Asteriscus maritimus (gold coin
daisy) clearly is associated with a large
amount of Na+ and Cl- in the leaves
(Rodríguez et al., 2005). High Na+ or Cl-

concentrations (or both) accumulated in leaf
tissue may damage the chloroplasts and thus
inhibit photosynthesis (Taiz et al., 2015).

Noteworthy, for salinity level at an EC of
5.0 dS·m–1 at both harvests (Table 2), there
was significant reduction in photosynthesis
rate and high accumulation of Na+ and Cl- in
the leaves compared with control, without
reductions in gS and transpiration rate. This
might indicate the maintenance of gS and
transpiration rate could contribute to the
greater accumulation of Na+ and Cl- in leaves.
Cai et al. (2014b) also reported that the high
salinity level at an EC of 10.0 dS·m–1 reduced
Pn, but not gS and E, in rose cultivar ‘Else
Poulsen’. Therefore, tatarian dogwood seed-
lings are sensitive to the high accumulation of
Na+ and Cl- in the leaves, which may be a
good indicator of salt sensitivity.

Mineral elements such as P, Zn2+, Fe3+,
and S decreased in tatarian dogwood plants
under saline solution irrigation with reduc-
tions of 4.1%, 22.9%, 48.7%, and 19.1% at an
EC of 5.0 dS·m–1, respectively, and 24.9%,

25.7%, 58.6%, and 27.7% at an EC of 10
dS·m–1, respectively (Table 3). However,
saline solutions at an EC of 5.0 dS·m–1 did
not affect the Cu2+, Mg2+, and B concentra-
tions of tatarian dogwood plants. Saline so-
lutions at an EC of 10.0 dS·m–1 increased
Cu2+ concentration by 20.6% and decreased
B concentration by 13.4%. These results are
in agreement with other studies. For example,
Sharpley et al. (1992) found salinity-reduced
P concentrations in plant tissues may result
from reduced activity of P in the soil solution
due to the high ionic strength of the media
and low solubility of Ca-P minerals (Grattan
and Grieve, 1999). TheMg2+ concentration in
six garden roses at elevated salinity was not
significant increased compared with the con-
trol (Niu et al., 2013). However, Petropoulos
et al. (2017) indicated that salinity stress
increased the Fe and Zn concentrations in
Cichorium spinosum, a salt tolerant plant,

Table 1. Visual score, plant height, shoot dry weight, and leaf area ofCornus alba seedlings irrigatedwith a
nutrient solution [electrical conductivity (EC) = 1.2 dS·m–1; control] or saline solution [EC = 5.0
dS·m–1 (EC 5) or 10.0 dS·m–1 (EC 10)] in a greenhouse. Data were pooled across substrate type because
the effects of substrate type on plant growth were not significant. Plants were harvested after the fifth
(first harvest, 36 d after the initiation of treatment) and eighth irrigation (second harvest, 64 d after the
initiation of treatment).

First harvest Second harvest

Control EC 5 EC 10 Control EC 5 EC 10

Visual score 4.8 az 3.4 b 0.2 c 4.8 a 1.0 b 0 c
Leaf area (cm2) 1895.1 a 1233.2 b —y 3621.6 a 393.0 b —x

Height (cm) 26.5 a 16.8 b 9.3 c 35.8 a 17.6 b —x

Shoot dry weight (g) 16.0 a 12.6 b 8.7 c 29.9 a 13.4 b —x

zMeans with same lowercase letters within harvest and parameters are not significantly different among
treatments by Tukey’s honestly significant difference multiple comparison or between treatments by
Student’s t test at P < 0.05.
yData were not collected because survived plants had severe foliar salt damage.
xAll plants were dead.

Table 2. Plant relative chlorophyll content [soil plant analysis development (SPAD)], chlorophyll
fluorescence (Fv/Fm), net photosynthesis rate (Pn), stomatal conductance (gS), and transpiration rate
(E) of Cornus alba seedlings irrigated with a nutrient solution [electrical conductivity (EC) = 1.2
dS·m–1; control] or saline solution [EC = 5.0 dS·m–1 (EC 5) or 10.0 dS·m–1 (EC 10)] in a greenhouse.
Date was taken after the fifth (first harvest, 36 d after the initiation of treatment) and eighth irrigation
(second harvest, 64 d after the initiation of treatment).

First harvest Second harvest

Control EC 5 EC 10 Control EC 5 EC 10

SPAD 40.4 a 32.2 b 28.3 b 36.2 a 30.0 b — z

Pn (mmol·m–2·s–1) 7.7 a 6.1 b 3.9 b 5.3 a 1.1 b —
gS (mmol·m–2·s–1) 218.5 a 178.9 ab 107.8 b 123.0 a 107.3 a —
E (mmol·m–2·s–1) 3.6 a 3.1 ab 2.4 b 2.6 a 2.2 a —
Fv/Fm 0.8 ay 0.8 a 0.7 b 0.8 a 0.7 b —
zAll plants were dead.
yMeans with same lowercase letters within harvest and parameters are not significantly different among
treatments by Tukey’s honestly significant difference multiple comparison or between treatments by
Student’s t test at P < 0.05.

Table 3. Leaf mineral concentrations of Cornus alba seedlings irrigated with a nutrient solution at an
electrical conductivity (EC) of 1.2 dS·m–1 (control) or saline solution at an EC of 5.0 dS·m–1 (EC 5) or
10.0 dS·m–1 (EC 10) in a greenhouse. Plant leaf samples at the first harvest (36 d after the initiation of
treatment) were used for the analyses.

Treatment

Mineral concn (mg·g–1 dry biomass)

Na+ Cl- Ca2+ K+ P Zn2+ Fe3+ S Cu2+ Mg2+ B

Control 0.13 cz 1.9 c 23.24 b 21.32 c 3.93 a 0.035 a 0.152 a 3.57 a 0.0029 b 6.37 a 0.079 ab
EC 5 1.56 b 49.3 b 32.18 a 26.69 b 3.77 a 0.027 b 0.078 b 2.89 b 0.0029 b 7.62 a 0.090 a
EC 10 5.29 a 65.0 a 29.88 a 31.55 a 2.95 b 0.026 b 0.063 b 2.58 b 0.0035 a 7.42 a 0.069 b
zMeans with same lowercase letters within column are not significantly different among treatments by
Tukey’s honestly significant difference multiple comparison at P < 0.05.
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which is in contrast to our study. The salinity-
induced mineral nutritional disorders may
occur depending on plant species.

Drought study (Expt. 2)
The daily average substrate VWC de-

creased and reached the corresponding set
points at 19 d after the initiation of automatic
irrigation (Fig. 2). Since then, the daily aver-
age substrate VWCs were maintained above
the set points throughout the experiment. The
average VWC, representing measurements
from 19 to 62 d after automatic irrigation
initiation, was 17.3%, 21.8%, 26.1%, 31.2%,

36.0%, 43.3%, and 45.8% for the irrigation
set points of 15%, 20%, 25%, 30%, 35%,
40%, and 45%, respectively. The fact that the
average VWC at the lowest set point was
higher than that of its set point could be the
result of lower substrate hydraulic conduc-
tivity when substrates have a lower VWC
(Naasz et al., 2005).

Plant height, leaf area, and shoot DW of
tatarian dogwood seedlings decreased line-
arly with decreasing VWC with the linear
regression coefficients (R2) of 0.92, 0.95, and
0.96, respectively (Fig. 3). When VWC de-
creased from 45% to 15%, plant height, leaf

area, and shoot DW decreased by 66.4%,
84.8%, and 85.5%, respectively. García-
Caparr�os et al. (2019) reported that a signif-
icant reduction of shoot DWwas observed on
Lavandula latifolia (broadleaved lavender),
Mentha piperita (peppermint), and Thymus
capitatus (spanish oregano) under water dep-
rivation. Govahi et al. (2015) reported that
water stress resulted in a reduction of fresh
weight in Salvia officinalis (common sage)
plants.

Although growth was stunted by drought
stress, there was no foliar damage in tatarian
dogwood seedlings among the seven VWC
treatments except for 15% VWC treatment,
which exhibited slight foliar drought damage
with an average visual score of 3.6 (Fig. 3).
For agricultural crops, drought tolerance is
often assessed based on the growth or yield
reduction of specific plant parts such as seeds,
roots, fruits, or leaves (Jones, 1993). How-
ever, for landscape plants, survival and aes-
thetic value are more important than growth
rate (Niu and Cabrera, 2010). Therefore,
tatarian dogwood seedlings survived in
water-deficit condition with acceptable vi-
sual quality.

There were no significant differences in
SPAD readings of tatarian dogwood seed-
lings among VWC treatments (Table 4). As
far as gas exchange parameters were con-
cerned, significant reductions were found in
leaf net Pn, gS, or E of tatarian dogwood
seedling plants at the VWC treatment of 15%

Fig. 2. Daily average substrate volumetric water contents maintained by a soil moisture sensor–controlled
automatic irrigation system. Substrate volumetric water content (VWC, %) is volume of water/volume
of substrate.

Fig. 3. Morphological responses and visual score of Cornus alba seedlings that were irrigated for 63 d with various substrate volumetric water contents (VWC;
volume of water/volume of substrate) maintained using a soil moisture sensor–controlled automatic irrigation system. Visual score: 0 = dead; 1 = severe foliar
damage (>90% leaves with burn and necrosis at the margin); 2 = moderate foliar damage (90% to 50%); 3 = slight foliar damage (50% to 10%); 4 = good
quality with minimal foliar damage (<10%); and 5 = excellent without foliar damage (Sun et al., 2015).
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(Table 4). These results corresponded to the
significant reductions in plant height, leaf
area, and shoot DW. Zhen et al. (2014)
concluded that slow growth at low VWC
may be caused by the low photosynthetic
activity due to drought stress. Under drought
stress conditions, plants close their stomata to
reduce the transpiration and the CO2 influx,
resulting in a decrease in photosynthesis
(Yokota et al., 2002). Drought stress also
reduces leaf area, which reduces photosyn-
thetic rate per plant, hence reducing shoot dry
growth.

The Fv/Fm of tatarian dogwood seedlings
measured in the morning and in the afternoon
was not significant among treatments in cur-
rent study (Table 4), which indicated that the
photosynthesis system II (PSII) was not af-
fected. Instead of damaged PSII photochem-
istry, tatarian dogwood seedlings adapt to
drought stress by restricting CO2 supply and
water uptake to limit the photosynthesis
at the VWC treatment of 15%. Small or
no differences in Fv/Fm have been reported
when plants were drought stressed (Maxwell
and Johnson, 2000; Starman and Lombar-
dini, 2006). Zhen et al. (2014) reported that
Aquilegia canadensis (canadian colum-
bine) plants gradually exposed to low rates
of drought stress had reduced Pn and gS, but no
detectable differences on Fv/Fm. S�anchez-
Blanco et al. (2009) also observed no
drought-induced damage to PSII of Pelar-
gonium zonale (zonal geranium). These re-
sults suggest that tatarian dogwood plants
may possess a greater capacity to counter
photosynthetic damage through alternative
mechanisms when photochemistry is stomatal-
limited, such as increased photorespiration (Voss
et al., 2013).

In this study, as VWC decreased from
45% to 15%, water potential reduced linearly
from –1.77 to –2.89 MPa (Table 4). This
result might indicate that tatarian dogwood
could use osmotic adjustment to maintain
water relations under drought stress. Plants
under water deficit can lower water potential
via accumulated solutes in the cells to attract
water into the cell and to maintain turgor
pressure (Subbarao et al., 2000). Actually, in
a similar study, tatarian dogwood plants
could improve the osmotic regulation ability

to maintain its cell turgor for preventing
plants from water loss and wilt under water
deficit (Xu et al., 2011).

In summary, salt stress significantly im-
pacted the plant growth of tatarian dogwood
seedlings. All plants died when irrigated with
saline solutions at an EC of 10.0 dS·m–1, and
those plants irrigated with saline solutions at
an EC of 5.0 dS·m–1 exhibited severe foliar
damage. Leaf Na+ and Cl- concentrations of
tatarian dogwood seedlings irrigated with
saline solutions were excessively higher than
those in the control. Drought stress decreased
plant growth of tatarian dogwood seedlings,
but all plants survived at all VWC treatments.
Significant reductions in the gas exchange
parameters (Pn, gS, and E) and water potential
at VWC of 15% were observed, but SPAD
reading and Fv/Fm of tatarian dogwood plants
were similar among the different VWCs, and
the photosynthesis system of plants was not
damaged by drought stress. On the basis of
the results described here, tatarian dogwood
is salt sensitive but is drought tolerant.
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